Основное уравнение мкт. Молекулярно-кинетическая теория идеального газа. Основные положения МКТ. Модель идеального газа Кр 8 молекулярно кинетическая теория идеального газа

10 класс

Контрольная работа № 5

Вариант 1

25 м -3 .

3 -23

6 (м/с) 2 25 м -3 -26 кг?

25 м -3

3 -12 Па?

10 класс

Контрольная работа № 5

«Основы молекулярно-кинетической теории идеального газа»

Вариант 2

5 м 3 18 молекул?

5 3 м/с.

21 Дж.

3 H 8

10 класс

Контрольная работа № 5

«Основы молекулярно-кинетической теории идеального газа»

Вариант 1

1. Определите температуру водорода и среднюю квадратичную скорость его молекул при давлении 100 кПа и концентрации молекул 10 25 м -3 .

2. Сосуд, имеющий форму куба со стороной 1 м, содержит идеальный газ в количестве 10 -3 моль. Найдите давление газа, если масса одной молекулы 3 ∙ 10 -23 г и средняя скорость теплового движения молекул 500 м/с.

3. Под каким давлением находится газ в сосуде, если средний квадрат скорости его молекул 10 6 (м/с) 2 , концентрация молекул 3 ∙ 10 25 м -3 , а масса каждой молекулы 5 ∙ 10 -26 кг?

4. Концентрация молекул газа 4 ∙ 10 25 м -3 .Рачитайте давление газа при температуре 290 К.

5. Какое число молекул находится в сосуде объемом 5 м 3 при 300 К, если давление газа 10 -12 Па?

10 класс

Контрольная работа № 5

«Основы молекулярно-кинетической теории идеального газа»

Вариант 2

1. Какова средняя скорость теплового движения молекул, если при давлении 250 кПа газ массой 8 кг занимает объем 15 м 3 ?

2. Какое давление производят пары ртути в баллоне ртутной лампы вместимостью 3 · 10 -5 м 3 при300 К, если в ней содержится 10 18 молекул?

3. Определить плотность кислорода при давлении 1,3 ∙ 10 5 Па, если средняя квадратичная скорость его молекул равна 1,4 ∙ 10 3 м/с.

4. При какой температуре средняя кинетическая энергия молекул газа равна 10,35 ∙ 10 -21 Дж.

5. В резервуаре объемом 3000 л находится пропан (C 3 H 8 ), количество вещества которого 140 моль, а температура 300 К. Какое давление оказывает газ на стенки сосуда?


1. Идеальный газ, изопроцессы.

2. Уравнение Клапейрона-Менделеева.

3. Основное уравнение молекулярно-кинетической теории идеального газа.

4. Средняя кинетическая энергия поступательного движения молекулы.

5. Число степеней свободы молекулы.

6. Закон равномерного распределения энергии по степеням свободы.

7. Теплоемкости (удельная, молярная).

8. Смесь газов. Закон Дальтона.

ОСНОВНЫЕ ФОРМУЛЫ ДЛЯ РЕШЕНИЯ ЗАДАЧ

Законы идеальных газов

Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева)

где m – масса газа; M – его молярная масса; R – универсальная газовая постоянная; n=m/M – количество молей вещества; T – абсолютная температура.

Закон Дальтона

P=P 1 +P 2 +. . .+P n ,

где Р – давление смеси газов; P i – парциальное давление i-го компонента смеси; n – число компонентов смеси.

Молярная масса смеси газов

M=(m 1 +m 2 +. . . +m k)/(n 1 +n 2 +. . .+ n k),

где m i – масса i-го компонента смеси; n i – количество вещества i-го компонента смеси; к – число компонентов смеси.

Массовая доля i-й компоненты смеси газов

где m i – масса i-го компонента смеси; m – масса смеси.

Молекулярно-кинетическая теория газов (МКТ)

Количество вещества

где N – число структурных элементов системы (молекул, атомов, ионов и т.п.); N A – число Авогадро; m – масса газа; M– молярная масса.

Молярная масса вещества

Масса одной молекулы вещества

Количество вещества смеси

где n i , m i – количество вещества и масса i-го компонента смеси; к – число компонентов смеси.

Концентрация частиц (молекул, атомов и т.п.) однородной системы

где N – число частиц системы; V – ее объем; r – плотность вещества.



Основное уравнение кинетической теории газов

где P – давление газа; n – его концентрация; <e П > – средняя кинетическая энергия поступательного движения молекулы.

Средняя кинетическая энергия, приходящаяся на одну степень свободы молекулы

где k – постоянная Больцмана; Т – абсолютная температура.


Средняя кинетическая энергия, приходящаяся на все возбужденные степени свободы молекулы

где i – число возбужденных степеней свободы молекулы.

Средняя кинетическая энергия поступательного движения молекулы

Зависимость давления газа от концентрации молекул и температуры

Молярная C и удельная с теплоемкости газа связаны между собой соотношением

где M – молярная масса газа.

Молярные теплоемкости газа при постоянном объеме и постоянном давлении равны соответственно

C v =iR/2; C p =(i+2)R/2,

где i – число степеней свободы; R – универсальная газовая постоянная.

Удельные теплоемкости при постоянном объеме и постоянном давлении соответственно равны

Уравнение Майера для молярных теплоемкостей


СПРАВОЧНЫЙ МАТЕРИАЛ

Давление 1 мм рт. ст.=133 Па.

Давление 1 атм=760 мм рт. ст.

Молярная масса воздуха M =29×10 -3 кг/моль.

Молярная масса аргона M =40×10 -3 кг/моль.

Молярная масса криптона M =84×10 -3 кг/моль.

Нормальные условия: P=1,01×10 5 Па, Т=273 К.

Постоянная Больцмана k=1,38×10 -23 Дж/К.

Универсальная газовая постоянная R=8,31 Дж/(моль×К).

Число Авогадро N A =6,02×10 23 моль -1 .

ВОПРОСЫ И УПРАЖНЕНИЯ

1. Каковы основные положения термодинамического и молекулярно-кинетического (статистического) методов изучения макроскопических систем?

2. Назовите основные параметры термодинамической системы.

3. Дайте определение единицы термодинамической температуры.

4. Запишите уравнение состояния идеального газа (уравнение Менделеева-Клапейрона).

5. Каковы физический смысл, размерность и численное значение универсальной газовой постоянной R?

6. Сформулируйте законы изопроцессов идеального газа.

7. Дайте определение единицы количества вещества 1 моль.

8. Сколько молекул содержится в моле любого вещества?

10. На чем основан вывод уравнения молекулярно-кинетической теории идеальных газов для давления? Сравните это уравнение с уравнением Менделеева-Клапейрона.

11. Получите соотношения р=nkT и =3kT/2.

12. Каковы физический смысл, численное значение и единицы измерения постоянной Больцмана k?

13. Каково содержание одного из основных положений статистической физики о равнораспределении энергии по степеням свободы?

14. Считая, что средняя энергия молекулы идеального газа =ikT/2, где i – сумма поступательных, вращательных и удвоенного числа колебательных степеней свободы молекулы, получите выражение для внутренней энергии произвольной массы идеального газа.

15. Что такое удельная и молярная теплоемкости идеального газа? Почему для идеального газа существуют два вида теплоемкостей?

16. Получите уравнение Майера для молярных теплоемкостей.

17. Запишите закон Дальтона и объясните его физический смысл. Какие физические величины, характеризующие смесь, можно складывать?

ЗАДАЧИ ГРУППЫ А

1.(5.20) Чему равна плотность r воздуха в сосуде, если сосуд откачан до наивысшего разрежения, создаваемого современными лабораторными способами (P=10 -11 мм рт. ст.)? Температура воздуха равна 15 0 С.

Ответ: r=1,6×10 -14 кг/м 3 .

2.(5.21) m=12 г газа занимают объем V=4×10 -3 м 3 при температуре t=7 0 С. После нагревания газа при постоянном давлении его плотность стала равна r=6×10 -4 г/см 3 . До какой температуры нагрели газ?

Ответ: Т=1400 0 К.

3.(5.28) В сосуде находится m 1 =14 г азота и m 2 =9 г водорода при температуре t=10 0 C и давлении Р=1 МПа. Найти: 1) молярную массу смеси, 2) объем сосуда.

Ответ: M=4,6×10 -3 кг/моль; V=11,7×10 -3 м 3 .

4.(5.29) В закрытый сосуд, наполненный воздухом при температуре 20 0 С и давлении 100 кПа., вводится диэтиловый эфир (С 2 H 5 OC 2 H 5). После того, как эфир испарился, давление в сосуде стало равно Р=0,14 МПа. Какое количество эфира было введено в сосуд? Объем сосуда V=2 л.

Ответ: m=2,43×10 -3 кг.

5.(5.58) Чему равна энергия теплового движения m=20 г кислорода (О 2) при температуре t=10 0 С? Какая часть этой энергии приходится на долю поступательного движения, а какая – на долю вращательного?

Ответ: W=3,7 кДж; W пост. =2,2 кДж; W вр. =1,5 кДж.

6.(5.61) Чему равна энергия теплового движения молекул двух-
атомного газа, заключенного в сосуд объемом V=2 л и находящегося под давлением Р=150 кПа?

Ответ: W=750 Дж.

7.(5.69) Для некоторого двухатомного газа удельная теплоемкость при постоянном давлении равна c р =14,67×10 3 Дж/(кг×K). Чему равна молярная масса этого газа?

Ответ: M=2×10 -3 кг/моль.

8.(5.71) Найти удельные теплоемкости c v и c р некоторого газа, если известно, что его молярная масса M=0,03 кг/моль и отношение c p /c v =1,4.

Ответ: c v =693 Дж/(кг×К); c р =970 Дж/(кг×К).

9.(5.76) Найти удельную теплоемкость при постоянном давлении газовой смеси, состоящей из n 1 =3 кмоль аргона (Аr) и n 2 =2 кмоль азота (N 2).

Ответ: c р =685 Дж/(кг×К).

10.(5.77) Найти отношение c р /c v для газовой смеси, состоящей из m 1 =8 г гелия (He) и m 2 =16 г кислорода (О 2).

Ответ: c р /c v =1,59.

ЗАДАЧИ ГРУППЫ Б

1.(2.2) Баллон емкостью V=20 л содержит смесь водорода (H 2) и гелия (He) при температуре Т=300 К и давлении Р=8 атм. Масса смеси m=25 г. Определить массы водорода m 1 и гелия m 2 . 1 атм.=100 кПа.

Ответ: m 1 =0,672×10 -3 кг; m 2 =24,3×10 -3 кг.

2.(2.3) В сосуде находится смесь m 1 =7 г азота (N 2) и m 2 =11 г углекислого газа (СО 2) при температуре Т=290 К и давлении Р=1 атм. Найти плотность r этой смеси, считая газы идеальными.
1 атм.=100 кПа.

Ответ: r=1,49 кг/м 3 .

3.(2.4) Сосуд объемом V=60 л содержит смесь кислорода (О 2) и водорода (H 2) при температуре Т=360 К и давлении Р=750 мм рт. ст. Масса смеси m=19 г. Определить парциальные давления кислорода р 1 и водорода р 2 . 1 мм рт. ст.=133 Па.

Ответ: р 1 =24,9 кПа; р 2 =74,8 кПа.

4.(2.7) В сосуде находится смесь m 1 =8 г кислорода (О 2) и m 2 =7 г азота (N 2) при температуре Т=400 К и давлении Р=10 6 Па. Найти плотность смеси газов r, парциальные давления компонент р 1 , р 2 и массу одного моля смеси M .

Ответ: r=9,0 кг/м 3 ; р 1 =р 2 =0,5 МПа; m=30×10 -3 кг.

5.(2.8) Оболочка аэростата, находящегося у поверхности земли, наполнена водородом на 7/8 своего объема, равного V=1600 м 3 , при давлении Р 1 =100 кПа и температуре Т 1 =290 К. Аэростат поднялся на некоторую высоту, где давление Р 2 =80 кПа и температура Т 2 =280 К. Определить массу водорода Dm, вышедшего из оболочки аэростата при его подъеме.

Ответ: Dm=6,16 кг.

6.(2.51) Двухатомный газ массой m=10 г занимает объем V=6 л при давлении Р=10 6 Па и температуре t=27 0 С. Определить удельную теплоемкость c v этого газа.

Ответ: c v =5×10 3 Дж/(кг×К).

7.(2.52) Определить удельную теплоемкость смеси c P при постоянном давлении, если смесь состоит из m 1 =20 г углекислого газа (СО 2) и m 2 =40 г криптона (Кr).

Ответ: c P =417 Дж/(кг×К).

8.(2.55) Одному киломолю некоторого идеального газа в процессе изобарического расширения сообщили количество тепла
Q=249 кДж, при этом его температура увеличилась на
DT=(Т 2 –Т 1)=12 К. Определить число степеней свободы газа i.

Ответ: i=3.

9.(2.56) Найти массу m одного киломоля и число степеней свободы i молекулы газа, у которого удельные теплоемкости равны: c V =750 Дж/(кг×К), c P =1050 Дж/(кг×К).

Ответ: m=27,7 кг, i=5.

10.(2.58) Плотность некоторого трехатомного газа при нормальных условиях составляет r=1,4 кг/м 3 . Определить удельную теплоемкость c V этого газа при изохорическом процессе. Атмосферное давление P 0 =100 кПа.

Ответ: c V =785 Дж/(кг×К).

ЗАДАЧИ ГРУППЫ С

1. В сосуде находится смесь кислорода (О 2) и водорода (H 2). Масса m смеси равна 3,6 г. Массовая доля W 1 кислорода составляет 0,6. Определить количество вещества n смеси, n 1 и n 2 каждого газа в отдельности.

Ответ: n=788 ммоль; n 1 =68 ммоль; n 2 =720 ммоль.

2. В баллоне вместимостью V=1 л находится азот (N 2) при нормальных условиях. Когда азот нагрели до температуры Т=1,8 кК, то часть молекул азота оказалась диссоциированной на атомы. Степень диссоциации a=0,3. Определить: 1) количество вещества n и концентрацию n молекул азота до нагревания; 2) количество вещества n м и концентрацию n м молекул молярного азота после нагревания; 3) количество вещества n a и концентрацию n a атомов атомарного азота после нагревания; 4) полное количество вещества n пол и концентрацию n пол частиц в сосуде после нагревания. Диссоциацией молекул при нормальных условиях пренебречь. (Степенью диссоциации называют отношение числа молекул, распавшихся на атомы, к общему числу молекул газа).

Ответ: 1) 44,6 ммоль, 2,69×10 25 м -3 ; 2) 31,2 ммоль, 1,88×10 25 м -3 ;

3) 26,8 ммоль, 1,61×10 25 м -3 ; 4) 58 ммоль, 3,49×10 25 м -3 .

3. По газопроводу течет углекислый газ (СО 2) при давлении Р=0,83 МПа и температуре t=27 0 С. Какова скорость течения газа в трубе, если за t=2,5 мин через поперечное сечение трубы площадью S=5 см 2 протекает m=2,2 кг газа?

Ответ: м/с.

4. Резиновый шарик массой m=2 г надувается гелием (Hе) при температуре t=17 0 С. При достижении в шарике давления Р=1,1 атм он лопается. Какая масса гелия была в шарике, если перед тем, как лопнуть, он имел сферическую форму? Резиновая пленка рвется при толщине d=2×10 -3 см. Плотность резины r=1,1 г/см 3 . Условие d<

Ответ: кг.

5. Три одинаковых сосуда, соединенных трубками, заполнены газообразным гелием при температуре Т=40 К. Затем один из сосудов нагрели до Т 1 =100 К, а другой - до Т 2 =400 К, а температура третьего не изменилась. Во сколько раз возросло давление в системе? Объемом соединительных трубок пренебречь.

Ответ:

6. Для получения высокого вакуума в стеклянном сосуде его необходимо прогревать при откачке с целью удалить адсорбированные газы. Определить на сколько повысится давление в сферическом сосуде радиусом R=10 см, если все адсорбированные молекулы перейдут со стенок в сосуд. Слой молекул на стенках считать мономолекулярным, площадь поперечного сечения одной молекулы s равно 10 -15 см 2 . Температура прогрева Т=600 К.

Ответ: Па.

7. В сосуде А объемом V 1 =2 л находится газ под давлением Р 1 =3×10 5 Па, а в сосуде В объемом V 2 =3 л находится та же масса того же газа, что и в сосуде А. Температура обоих сосудов одинакова и постоянна. Под каким давлением Р будет находиться газ после соединения сосудов А и В трубкой. Объемом соединительной трубки пренебречь.

Ответ: Р=2Р 1 V 1 /(V 1 +V 2)=2,4×10 5 Па.

8. Молекулярный пучок падает перпендикулярно на поглощающую стенку. Концентрация молекул в пучке n, масса молекулы m 0 , скорость каждой молекулы u. Найти давление Р, испытываемое стенкой, если: а) стенка неподвижна; б) стенка движется в направлении нормали со скоростью u

Ответ: а) Р=nm 0 u 2 , б) Р=nm 0 (u±u) 2 .

9. Какие ответы будут в задаче 8, если стенка абсолютно упругая, а пучок падает на стенку под углом a к ее нормали. В п. б) скорость движения стенки u

Ответ: а) Р=2nm 0 u 2 cos 2 a, б) Р=2nm 0 (ucosa±u) 2 .

10. Вычислить среднюю энергию поступательного , вращательного и колебательного движений двухатомной молекулы газа при температуре Т=3×10 3 К.

Ответ: =6,2×10 -20 Дж, ==4,1×10 -20 Дж.

Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические (параметры) процессы в телах, связанные с огромным числом атомов и молекул, содержащихся в телах.

Для исследования этих процессов применяют два метода: статистический (молекулярно-кинетический) и термодинамический.

Молекулярная физика изучает строение и свойства вещества, исходя из молекулярно – кинетических представлений, основывающихся на том что:

1) все тела состоят из молекул

2) молекулы непрерывно и беспорядочно движутся

3) между молекулами существуют силы притяжения и отталкивания - межмолекулярные силы .

Статистический метод основан на том, что свойства макроскопической системы определяются, в конечном счете, свойствами частиц системы.

Термодинамика – изучает общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями и не рассматривает микропроцессы, которые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического метода. Основа термодинамического метода – определение состояния термодинамической системы.

Термодинамическая система – совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией между собой и внешней средой.

Состояние системы задается термодинамическими параметрами: p, V, T.

Применяют две шкалы температуры: Кельвина и Цельсия.

T = t + 273 0 - связь между температурами t и Т

где t - измеряется в Цельсиях 0 С ; Т - измеряется в кельвинах К.

В молекулярно – кинетической теории пользуются моделью идеального газа, согласно которой:

Собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда

Между молекулами газа отсутствуют силы взаимодействия

Столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Состояние идеального газа характеризуется 3 параметрами: p, V, T.

- уравнение Менделеева - Клайперона

или уравнение состояния идеального газа

здесь: - количество вещества [моль ]

R = 8,31 - универсальная газовая постоянная

Опытным путем был установлен целый ряд законов, описывающих поведение идеальных газов.

Рассмотрим эти законы:

1) T const изотермический процесс

р

T –растет pV = const -

закон Бойля – Мариотта

2) p = const - изобарный процесс

p 2 -const - закон Гей - Люссака

p 1 p 2

p 1 >p 2

3) V const изохорный процесс

р

V 1 - закон Шарля

V 1 >V 2

4) Закон Авогадро : моли любых газов при одинаковой температуре и давлении имеют одинаковые объемы.

При нормальных условиях: V = 22,4×10 -3 м 3 /моль

В 1 моле различных веществ содержится одно и то же число молекул, называемое постоянной Авогадро

N A = 6,02×10 23 моль -1

5) Закон Дальтона : давление смеси идеальных газов равно сумме парциальных давлений, входящих в нее газов.

p = p 1 + p 2 + . . . + p n – закон Дальтона

где p 1 , p 2 , . . . p n – парциальные давления.

- постоянная Больцмана k = 1,38 ×10 -23 Дж/К

При одинаковых температурах и давлении все газы в единице объема содержат одинаковое число молекул.

Число молекул, содержащихся, в 1м 3 газа при нормальных условиях называется числом Лошмидта N L = 2,68×10 25 м 3

Нормальные условия: р 0 = 1,013×10 3 Па

V 0 = 22,4×10 -3 м 3 /моль

Т 0 = 273 К

R = 8,31 Дж/мольК

На основе использования основных положений молекулярно-кинетической теории было получено уравнение, которое позволяет вычислить давление газа, если известны m - масса молекулы газа, среднее значение квадрата скорости u 2 и концентрация n молекул.


Тогда - первое следствие из основного уравнения МКТ

- концентрация молекул

Температура – есть мера средней кинетической энергии молекул.

Тогда - второе следствие из основного уравнения МКТ

Теперь запишем - среднюю квадратичную скорость движения молекул

Средняя арифметическая скорость движения молекул определяется по формуле

Молекулы, беспорядочно двигаясь, непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекулы проходят некоторый путь, который называется длиной свободного пробега .

Длина свободного пробега все время меняется, поэтому следует говорить о средней длине свободного пробега , как о среднем пути, проходимом молекулой между двумя последовательными соударениями

Физика. 10 класс. Дидактические материалы. Марон А.Е., Марон Е.А.

М.: 2014. - 1 58с. 2-е изд., стер. - М.: 2005. - 1 58с.

Данное пособие включает тесты для самоконтроля, самостоятельные работы, разноуровневые контрольные работы. Предлагаемые дидактические материалы составлены в полном соответствии со структурой и методологией учебников В.А. Касьянова «Физика. Базовый уровень. 10 класс» и «Физика. Углубленный уровень. 10 класс».

Формат: pdf (2014 , 158с.)

Размер: 2 Мб

Смотреть, скачать: 02

Формат: pdf (2005 , 158с.)

Размер: 4,3 Мб

Скачать: 02 .09.2016г, ссылки удалены по требованию изд-ва "Дрофа" (см. примечание)

Содержание
Предисловие 3
ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ
ТС-1. Перемещение. Скорость. Равномерное прямолинейное движение 4
ТС-2. Прямолинейное движение с постоянным ускорением 5
ТС-3. Свободное падение. Баллистическое движение 7
ТС-4. Кинематика периодического движения 8
ТС-5. Законы Ньютона 10
ТС-6. Силы в механике 11
ТС-7. Применение законов Ньютона 12
ТС-8. Закон сохранения импульса 14
ТС-9. Работа силы. Мощность 16
ТС-10. Потенциальная и кинетическая энергия 17
ТС-11. Закон сохранения механической энергии 18
ТС-12. Движение тел в гравитационном поле 20
ТС-13. Динамика свободных и вынужденных колебаний... 22
ТС-14. Релятивистская механика 23
ТС-15. Молекулярная структура вещества 24
ТС-16. Температура. Основное уравнение молекулярно-кинетической теории 26
ТС-17. Уравнение Клапейрона-Менделеева. Изопроцессы. . 27
ТС-18. Внутренняя энергия. Работа газа при изопроцессах. Первый закон термодинамики 29
ТС-19. Тепловые двигатели 30
ТС-20. Испарение и конденсация. Насыщенный пар. Влажность воздуха. Кипение жидкости 32
ТС-21. Поверхностное натяжение. Смачивание, капиллярность 33
ТС-22. Кристаллизация и плавление твердых тел 35
ТС-23. Механические свойства твердых тел 37
ТС-24. Механические и звуковые волны 39
ТС-25. Закон сохранения заряда. Закон Кулона 40
ТС-26. Напряженность электростатического поля 42
ТС-27. Работа сил электростатического поля. Потенциал электростатического поля 44
ТС-28. Диэлектрики и проводники в электростатическом поле 47
ТС-29. Электроемкость уединенного проводника и конденсатора. Энергия электростатического поля. . 49
САМОСТОЯТЕЛЬНЫЕ РАБОТЫ
СР-1. Равномерное прямолинейное движение 51
СР-2. Прямолинейное движение с постоянным ускорением 52
СР-3. Свободное падение. Баллистическое движение 53
СР-4. Кинематика периодического движения 54
СР-5. Законы Ньютона 56
СР-6. Силы в механике 57
СР-7. Применение законов Ньютона 58
СР-8. Закон сохранения импульса 59
СР-9. Работа силы. Мощность 61
СР-10. Потенциальная и кинетическая энергия. Закон сохранения энергии 62
СР-11. Абсолютно неупругое и абсолютно упругое столкновение 63
СР-12. Движение тел в гравитационном поле 64
СР-13. Динамика свободных и вынужденных колебаний. ... 66
СР-14. Релятивистская механика 67
СР-15. Молекулярная структура вещества 68
СР-16. Температура. Основное уравнение молекулярно-кинетической теории 69
СР-17. Уравнение Клапейрона-Менделеева. Изопроцессы. . 70
СР-18. Внутренняя энергия. Работа газа при изопроцессах. . 72
СР-19. Первый закон термодинамики 73
СР-20. Тепловые двигатели 74
СР-21. Испарение и конденсация. Насыщенный пар. Влажность воздуха 75
СР-22. Поверхностное натяжение. Смачивание, капиллярность 77
СР-23. Кристаллизация и плавление твердых тел. Механические свойства твердых тел 78
СР-24. Механические и звуковые волны 80
СР-25. Закон сохранения заряда. Закон Кулона 81
СР-26. Напряженность электростатического поля 83
СР-27. Работа сил электростатического поля. Потенциал... 84
СР-28. Диэлектрики и проводники в электростатическом поле 86
СР-29. Электроемкость. Энергия электростатического поля 87
КОНТРОЛЬНЫЕ РАБОТЫ
КР-1. Прямолинейное движение 89
КР-2. Свободное падение тел. Баллистическое движение... 93
КР-3. Кинематика периодического движения 97
КР-4. Законы Ньютона 101
КР-5. Применение законов Ньютона 105
КР-6. Закон сохранения импульса 109
КР-7. Закон сохранения энергии 113
КР-8- Молекулярно-кинетическая теория идеального газа 117
КР-9. Термодинамика 121
КР-10. Агрегатные состояния вещества 125
КР-11. Механические и звуковые волны 129
КР-12. Силы электромагнитного взаимодействия неподвижных зарядов 133
КР-13. Энергия электромагнитного взаимодействия неподвижных зарядов 137
ОТВЕТЫ
Тесты для самоконтроля 141
Самостоятельные работы 144
Контрольные работы 149
Список литературы 154

Цель урока: Проверить знания учащихся и выяснить степень усвоения материала данной темы.

Ход урока

Организационный момент.

Вариант -1 (1 – го уровня)

1. Рассчитайте молекулярную массу кислорода – О₂. (Ответ: 32·10 -3 кг/моль)

2. Имеется 80 г кислорода, вычислить количество молей в нем. (Ответ: 2,5 моля)

3. Вычислить давление газа на стенки баллона, если известно, что в нем находится пропан

(С3Н4) объемом 3000 л при температуре 300 К. Количество вещества этого газа равно

140 моль. (Ответ: 116кПа)

4. Какова причина броуновского движения?

5. На рисунке представлен переход идеального газа из 1 состояния в состояние 2.

А) Дайте название процессу перехода. Б) Покажите график процесса в PТ и VT координатах.

0 2 V

Вариант – 2 (1 – го уровня)

1. Рассчитайте молекулярную массу воды – Н₂О. (Ответ:18·10-3кг/моль)

2. В стакане 200 г воды. Найти количество молей воды. (Ответ: 11,1 моля)

3. В резервуаре содержится азот массой 4 кг при температуре 300 К и давлении 4·105 Па.

Найти объем азота.

4. Почему газ занимает весь предоставленный ему объем?

5. На рисунке представлен переход идеального газа из состояния 1 в состояние 2.

А) Дайте название процессу перехода. Б) Покажите график процесса в РТ и VT координатАх.

Вариант -1 (2 – го уровня)

1. Определить массу 1022 молекул азота.

Решение. m = m₀ N = M N/NA; m = 4.7 (кг)

2. Температура водорода 25˚С. Вычислить его плотность при нормальном атмосферном давлении.

Решение. ρ = P М/ RT = 81 (г/см³)

3. Колбы электрических ламп инертным газом заполняют при пониженном давлении и температуре. Объясните причину.

4. В системе координат РТ показан график изменения состояния идеального газа.

А) Дайте название каждому переходу.

Б) Изобразите переходы в координатах PV и VT.

5. В зависимости от времени года наблюдается разница в массе воздуха, который находится внутри помещения. Летом температура воздуха – 40˚С, а зимой – 0˚С при нормальном атмосферном давлении. Молярная масса воздуха 29·10-3 кг/моль. Найти разницу в массе воздуха.

P V = m R T/ M; m1 = P V M/R T1; m2 = P V M/R T2; Δm = m₁ – m₂;

Δm = P V M/R (1/T1 – 1/T2); Δm = 8,2 (кг)

Вариант -2 (2 – го уровня)

N = γ NA = m NА/M; N = 3,3 1012 (молекул)

2. Азот находится в закрытом сосуде емкостью 5 л и имеет массу 5 г. Его нагревают от 20˚С до 40˚С. Вычислить давление азота до и после нагревания.

Решение. P1 V = m RT/ M; P1 = m RT/ VM; P1 = 8,7 (Па)

P₁/P₂ = T₁/T₂; P₂ = P₁ T₂/T₁; P₂ = 9,3·104 (Па)

3. Почему камеры автомобильных колес зимой нагнетают до большего давления, чем летом?

4. В системе координат РТ изображен график изменения состояния идеального газа.

Р 4 А) Дайте название каждому переходу.

Б) Начертите переходы в координатах